In this work we establish an algorithm and distribution independent non-asymptotic trade-off between the model size, excess test loss, and training loss of linear predictors. Specifically, we show that models that perform well on the test data (have low excess loss) are either "classical" -- have training loss close to the noise level, or are "modern" -- have a much larger number of parameters compared to the minimum needed to fit the training data exactly. We also provide a more precise asymptotic analysis when the limiting spectral distribution of the whitened features is Marchenko-Pastur. Remarkably, while the Marchenko-Pastur analysis is far more precise near the interpolation peak, where the number of parameters is just enough to fit the training data, it coincides exactly with the distribution independent bound as the level of overparametrization increases.


翻译:在这项工作中,我们建立了一个与算法和分布无关的非渐进权衡,它涉及线性预测器的模型规模、过量的测试损失和训练损失。具体而言,我们表明在测试数据上表现良好的模型(具有较低的过量损失)要么是“传统的”——它们的训练损失接近于噪声级别,要么是“现代的”——它们的参数数目比最小的恰好适合训练数据的参数数目要大得多。当白化特征的极限谱分布是Marchenko-Pastur分布时,我们还提供了更精确的渐近分析。值得注意的是,当过参数化的水平增加时,虽然Marchenko-Pastur分析在插值峰附近更加精确,其中参数数目正好足够拟合训练数据,但它与分布无关的上限完全一致。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
最新《Transformers模型》教程,64页ppt
专知会员服务
311+阅读 · 2020年11月26日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
【Google论文】ALBERT:自我监督学习语言表达的精简BERT
专知会员服务
24+阅读 · 2019年11月4日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
最新《Transformers模型》教程,64页ppt
专知会员服务
311+阅读 · 2020年11月26日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
【Google论文】ALBERT:自我监督学习语言表达的精简BERT
专知会员服务
24+阅读 · 2019年11月4日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员