Embedding-based Retrieval (EBR) in e-commerce search is a powerful search retrieval technique to address semantic matches between search queries and products. However, commercial search engines like Facebook Marketplace Search are complex multi-stage systems optimized for multiple business objectives. At Facebook Marketplace, search retrieval focuses on matching search queries with relevant products, while search ranking puts more emphasis on contextual signals to up-rank the more engaging products. As a result, the end-to-end searcher experience is a function of both relevance and engagement, and the interaction between different stages of the system. This presents challenges to EBR systems in order to optimize for better searcher experiences. In this paper we presents Que2Engage, a search EBR system built towards bridging the gap between retrieval and ranking for end-to-end optimizations. Que2Engage takes a multimodal & multitask approach to infuse contextual information into the retrieval stage and to balance different business objectives. We show the effectiveness of our approach via a multitask evaluation framework and thorough baseline comparisons and ablation studies. Que2Engage is deployed on Facebook Marketplace Search and shows significant improvements in searcher engagement in two weeks of A/B testing.
翻译:在电子商务搜索中,基于嵌入式的检索检索(EBR)是处理搜索查询和产品之间语义匹配的一种强有力的搜索检索技术,但像Facebook 市场搜索这样的商业搜索引擎是复杂的多阶段系统,为多种商业目标优化。在Facebook 市场论坛上,搜索检索侧重于将搜索查询与相关产品相匹配,而搜索排名则更加强调上调更具吸引力的产品的背景信号。因此,端到端搜索器的经验既具有相关性,又具有互动性,也是系统不同阶段之间互动的功能。这给 EBR系统提出了挑战,以便优化搜索者的经验。在本文中,我们展示了Que2Engage,这是为弥合终端到终端优化检索和排名之间的差距而建立的搜索 EBR系统。 Que2Engage采用多式联运和多塔什克方法将背景信息引入检索阶段,平衡不同的商业目标。我们通过多任务评估框架和彻底基线比较与关系研究,展示了我们的方法的有效性。在Facebook 市场搜索和测试中安装了重要的搜索和双周。