Although the use of multiple Unmanned Aerial Vehicles (UAVs) has great potential for fast autonomous exploration, it has received far too little attention. In this paper, we present RACER, a RApid Collaborative ExploRation approach using a fleet of decentralized UAVs. To effectively dispatch the UAVs, a pairwise interaction based on an online hgrid space decomposition is used. It ensures that all UAVs simultaneously explore distinct regions, using only asynchronous and limited communication. Further, we optimize the coverage paths of unknown space and balance the workloads partitioned to each UAV with a Capacitated Vehicle Routing Problem(CVRP) formulation. Given the task allocation, each UAV constantly updates the coverage path and incrementally extracts crucial information to support the exploration planning. A hierarchical planner finds exploration paths, refines local viewpoints and generates minimum-time trajectories in sequence to explore the unknown space agilely and safely. The proposed approach is evaluated extensively, showing high exploration efficiency, scalability and robustness to limited communication. Furthermore, for the first time, we achieve fully decentralized collaborative exploration with multiple UAVs in real world. We will release our implementation as an open-source package.
翻译:虽然多无人飞行器(无人驾驶飞行器)的使用具有快速自主探索的巨大潜力,但很少受到注意。本文介绍RACER,这是使用分散式无人驾驶飞行器组成的车队进行的RACER(RACER),这是一个使用分散式无人驾驶飞行器的RAPid合作爆炸方法。为了有效发送无人驾驶飞行器,使用了基于在线 hgrid空间分解的双向互动。它确保所有无人驾驶飞行器都同时探索不同的区域,仅使用不同步和有限的通信。此外,我们优化了未知空间的覆盖路径,平衡了配给每个配有能力型汽车(CVRP)的无人驾驶飞行器的工作量。考虑到任务分配,每个无人驾驶飞行器都不断更新覆盖路径,并逐步提取关键信息以支持勘探规划。一个分级规划员会找到探索路径,改进本地观点,并按顺序生成最小时间的轨迹,以探索未知的空间。此外,我们提出的方法得到了广泛的评价,展示了高探索效率、可缩放性和稳度与有限通信的平衡。此外,我们第一次实现了以多种AVASS方式实现完全分散式合作开发。