Diabetes Mellitus has no permanent cure to date and is one of the leading causes of death globally. The alarming increase in diabetes calls for the need to take precautionary measures to avoid/predict the occurrence of diabetes. This paper proposes HealthEdge, a machine learning-based smart healthcare framework for type 2 diabetes prediction in an integrated IoT-edge-cloud computing system. Numerical experiments and comparative analysis were carried out between the two most used machine learning algorithms in the literature, Random Forest (RF) and Logistic Regression (LR), using two real-life diabetes datasets. The results show that RF predicts diabetes with 6% more accuracy on average compared to LR.
翻译:糖尿病梅利图斯至今没有永久的治疗方法,是全球死亡的主要原因之一。糖尿病的惊人增加要求采取预防措施避免/预防糖尿病的发生。本文提出健康Edge(HealthEdge),这是一个基于学习的智能医疗框架,用于在综合的IoT-edge-cloud计算系统中进行2型糖尿病预测。在文献中最常用的两种机器学习算法,即随机森林(RF)和物流回归(LR)之间进行了数值实验和比较分析,使用两种真实的糖尿病数据集。结果显示,俄罗斯联邦预测的糖尿病平均精确度比LR高出6%。