While pretrained language models achieve excellent performance on natural language understanding benchmarks, they tend to rely on spurious correlations and generalize poorly to out-of-distribution (OOD) data. Recent work has explored using counterfactually-augmented data (CAD) -- data generated by minimally perturbing examples to flip the ground-truth label -- to identify robust features that are invariant under distribution shift. However, empirical results using CAD for OOD generalization have been mixed. To explain this discrepancy, we draw insights from a linear Gaussian model and demonstrate the pitfalls of CAD. Specifically, we show that (a) while CAD is effective at identifying robust features, it may prevent the model from learning unperturbed robust features, and (b) CAD may exacerbate existing spurious correlations in the data. Our results show that the lack of perturbation diversity in current CAD datasets limits its effectiveness on OOD generalization, calling for innovative crowdsourcing procedures to elicit diverse perturbation of examples.


翻译:虽然经过培训的语言模型在自然语言理解基准方面取得了出色的业绩,但它们往往依赖虚假的关联性,对分布(OOD)数据过于笼统。最近的工作探索了使用反事实强化数据(CAD) -- -- 极小扰动实例生成的数据,以翻转地面真相标签 -- -- 以查明在分布转移中变化不定的强项特征。然而,使用 CAD对 OOOD 概括化使用的经验性结果好坏参半。为了解释这一差异,我们从线性高斯模型中提取了洞察力,并展示了CAD的陷阱。具体地说,我们表明:(a) 虽然CAD在识别强项特征方面是有效的,但它可能防止模型学习不受干扰的强项特征,以及(b) CAD可能加剧数据中现有的虚假关联性。我们的结果显示,目前CAD数据集缺乏扰动多样性,限制了其在OOD一般化方面的效力,我们呼吁采用创新的众承包程序,以了解各种实例。

0
下载
关闭预览

相关内容

《计算机辅助设计》是一份领先的国际期刊,为学术界和工业界提供有关计算机应用于设计的研究和发展的重要论文。计算机辅助设计邀请论文报告新的研究以及新颖或特别重要的应用,在广泛的主题中,跨越所有阶段的设计过程,从概念创造到制造超越。 官网地址:http://dblp.uni-trier.de/db/journals/cad/
专知会员服务
14+阅读 · 2021年5月21日
专知会员服务
33+阅读 · 2020年12月28日
【Google-CMU】元伪标签的元学习,Meta Pseudo Labels
专知会员服务
31+阅读 · 2020年3月30日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
1+阅读 · 2021年9月5日
A Survey on Automated Fact-Checking
Arxiv
8+阅读 · 2021年8月26日
Does Data Augmentation Benefit from Split BatchNorms
Arxiv
3+阅读 · 2020年10月15日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员