Fact-checking has become increasingly important due to the speed with which both information and misinformation can spread in the modern media ecosystem. Therefore, researchers have been exploring how fact-checking can be automated, using techniques based on natural language processing, machine learning, knowledge representation, and databases to automatically predict the veracity of claims. In this paper, we survey automated fact-checking stemming from natural language processing, and discuss its connections to related tasks and disciplines. In this process, we present an overview of existing datasets and models, aiming to unify the various definitions given and identify common concepts. Finally, we highlight challenges for future research.
翻译:由于信息和错误信息在现代媒体生态系统中传播的速度之快,实况调查变得日益重要,因此,研究人员一直在探索如何利用基于自然语言处理、机器学习、知识介绍和数据库的技术自动进行实况调查,以自动预测索赔的真实性。在本文件中,我们调查自然语言处理产生的自动实况调查,并讨论其与相关任务和学科的联系。在这个过程中,我们概述了现有的数据集和模型,目的是统一给出的各种定义并确定共同概念。最后,我们强调未来研究的挑战。