Clipping refers to adding 1 line of code A=min{A,B} to force the variable A to stay below a present bound B. Phenomenological clipping also occurs in turbulence models to correct for over dissipation caused by the action of eddy viscosity terms in regions of small scales. Herein we analyze eddy viscosity model energy dissipation rates with 2 phenomenological clipping strategies. Since the true Reynolds stresses are O(d^2) (d= wall normal distance) in the near wall region, the first is to force this near wall behavior in the eddy viscosity by clipping the turbulent viscosity. The second is Escudier's early proposal to clip the turbulence length scale, reducing too large values in the interior of the flow. Analyzing respectively shear flow turbulence and turbulence in a box (i.e., periodic boundary conditions), we show that both clipping strategies do prevent aggregate over dissipation of model solutions.
翻译:Clipping 指的是添加一行代码 A=min{A,B} 以强制变量 A 保持在目前绑定的 B 下。 气流模型中也出现基因剪切, 以纠正小尺度区域由于 Eddy 粘度条件的动作造成的过度消散。 我们在此分析 Eddy 粘度模型能量消散率, 使用 2 个 phenmencial 剪切策略。 由于 Reynolds 真正的压力是 靠近 墙区域的 O( d) 2 (d = 墙的正常距离 ), 首先是通过 剪裁 动荡 粘结 的 粘结 。 第二种是 埃斯库迪尔 的早期建议, 以 剪切 波动 长度, 缩小 流内部过大 的值 。 分析 切 剪切 流流 和 盒子中 的 的 波动 ( 定期边界 ), 我们显示 两种剪切策略都 防止 集 模式 。