Over-complete systems of vectors, or in short, frames, play the role of analog codes in many areas of communication and signal processing. To name a few, spreading sequences for code-division multiple access (CDMA), over-complete representations for multiple-description (MD) source coding, space-time codes, sensing matrices for compressed sensing (CS), and more recently, codes for unreliable distributed computation. In this survey paper we observe an information-theoretic random-like behavior of frame subsets. Such sub-frames arise in setups involving erasures (communication), random user activity (multiple access), or sparsity (signal processing), in addition to channel or quantization noise. The goodness of a frame as an analog code is a function of the eigenvalues of a sub-frame, averaged over all sub-frames. Within the highly symmetric class of Equiangular Tight Frames (ETF), as well as other "near ETF" families, we show a universal behavior of the empirical eigenvalue distribution (ESD) of a randomly-selected sub-frame: (i) the ESD is asymptotically indistinguishable from Wachter's MANOVA distribution; and (ii) it exhibits a convergence rate to this limit that is indistinguishable from that of a matrix sequence drawn from MANOVA (Jacobi) ensembles of corresponding dimensions. Some of these results follow from careful statistical analysis of empirical evidence, and some are proved analytically using random matrix theory arguments of independent interest. The goodness measures of the MANOVA limit distribution are better, in a concrete formal sense, than those of the Marchenko-Pastur distribution at the same aspect ratio, implying that deterministic analog codes are better than random (i.i.d.) analog codes. We further give evidence that the ETF (and near ETF) family is in fact superior to any other frame family in terms of its typical sub-frame goodness.
翻译:矢量系统过于完整, 或者在短框中, 发挥模拟代码在许多通信和信号处理领域的作用。 仅举几个例子, 包括代码配置多重访问( CDMA) 、 多描述源编码( MD) 的超完整表达式、 空间时间代码、 压缩传感器( CS) 的感应矩阵, 以及最近的不可靠的分布计算代码。 在本调查文件中, 我们观察的是框架子集的信息- 理论随机相似的行为。 这种子框架出现在包含删除( 通信)、 随机用户活动( 多访问) 或宽度( 信号处理) 的设置中, 除了频道或二次访问的噪音之外, 传播代码的序列序列。 一个框架作为模拟代码的优点是子框架的虚数值值值值值, 在所有子框架中平均分布。 在高对称的矩码框架中, 其它“ 直径比 ETF ” 家族更能提供。 我们展示的是实验性正式值分配( ESD) 和直线( 直径) 数据序列中, 直径直径对OVI 的序列的序列分布分析, 从OVI 的序列分配为直到直径直到直径直序的序列分析,, 从ODIL 直到直到直到直到直的序列的序列的序列的序列的序列的序列的序列流流流流分析, 度分析, 度分析是这些直径直序到直到直到直到直到直到直序号, 这些直到直到直到直到直序到直到直径序号的序列流的序列流的序列流的序列的序列的序列的序列流的序列流的序列的序列的序列流的序列流的序列流的序列流的序列流的序列流的序列的序列的序列的序列的序列的序列的序列的序列的计算法, 。( 。