Current seismic design codes primarily rely on the strength and displacement capacity of structural members and do not account for the influence of the ground motion duration or the hysteretic behavior characteristics. The energy-based approach serves as a supplemental index to response quantities and includes the effect of repeated loads in seismic performance. The design philosophy suggests that the seismic demands are met by the energy dissipation capacity of the structural members. Therefore, the energy dissipation behavior of the structural members should be well understood to achieve an effective energy-based design approach. This study focuses on the energy dissipation capacity of reinforced concrete (RC) shear walls that are widely used in high seismic regions as they provide significant stiffness and strength to resist lateral forces. A machine learning (Gaussian Process Regression (GPR))-based predictive model for energy dissipation capacity of shear walls is developed as a function of wall design parameters. Eighteen design parameters are shown to influence energy dissipation, whereas the most important ones are determined by applying sequential backward elimination and by using feature selection methods to reduce the complexity of the predictive model. The ability of the proposed model to make robust and accurate predictions is validated based on novel data with a prediction accuracy (the ratio of predicted/actual values) of around 1.00 and a coefficient of determination (R2) of 0.93. The outcomes of this study are believed to contribute to the energy-based approach by (i) defining the most influential wall properties on the seismic energy dissipation capacity of shear walls and (ii) providing predictive models that can enable comparisons of different wall design configurations to achieve higher energy dissipation capacity.


翻译:目前的地震设计规范主要依赖结构成员的强度和迁移能力,不考虑地面运动持续时间或歇歇性行为特征的影响。以能源为基础的方法作为反应量的补充指数,包括地震性能反复负荷的影响。设计哲学表明,地震需求是通过结构成员的能量消耗能力满足的。因此,结构成员的能源消耗行为应当很好地理解,以便实现有效的基于能源的设计方法。本研究的重点是强化混凝土(RC)剪裁墙的能量流失能力,高地震地区广泛使用这些墙的能量流失能力,因为它们为抵制横向力量提供了相当的坚硬和力量。机器学习(Gaussian进程倒退(GPR))基于地震的预测模型,以结构成员的能量流失能力满足了地震需求。因此,结构成员的能源消耗行为应当很好地理解,以便实现有效的基于能源消耗的设计方法。 最重要的设计参数是通过采用测序后消除和采用特征选择方法,以减少预测模型的复杂性,因为高地震性墙壁能的强度和强度模型的准确性能预测能力,即为准确的预测和精确的能源预测能力提供精确的预测数据。 拟议的模型的精确性预测能力,根据精确的预测和精确的预测结果,为预测的精确的预测提供精确的模型的预测的精确的精确性结果。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
32+阅读 · 2021年7月15日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
121+阅读 · 2019年12月9日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Machine Learning:十大机器学习算法
开源中国
21+阅读 · 2018年3月1日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年1月18日
Arxiv
65+阅读 · 2021年6月18日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
18+阅读 · 2019年1月16日
VIP会员
相关VIP内容
专知会员服务
32+阅读 · 2021年7月15日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
121+阅读 · 2019年12月9日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Machine Learning:十大机器学习算法
开源中国
21+阅读 · 2018年3月1日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员