In the present paper we initiate the challenging task of building a mathematically sound theory for Adaptive Virtual Element Methods (AVEMs). Among the realm of polygonal meshes, we restrict our analysis to triangular meshes with hanging nodes in 2d -- the simplest meshes with a systematic refinement procedure that preserves shape regularity and optimal complexity. A major challenge in the a posteriori error analysis of AVEMs is the presence of the stabilization term, which is of the same order as the residual-type error estimator but prevents the equivalence of the latter with the energy error. Under the assumption that any chain of recursively created hanging nodes has uniformly bounded length, we show that the stabilization term can be made arbitrarily small relative to the error estimator provided the stabilization parameter of the scheme is sufficiently large. This quantitative estimate leads to stabilization-free upper and lower a posteriori bounds for the energy error. This novel and crucial property of VEMs hinges on the largest subspace of continuous piecewise linear functions and the delicate interplay between its coarser scales and the finer ones of the VEM space. Our results apply to $H^1$-conforming (lowest order) VEMs of any kind, including the classical and enhanced VEMs.
翻译:在本文中,我们启动了为适应性虚拟元素方法(AVEMs)建立一个数学上健全的理论(AVEMs)的艰巨任务。在多边形节点领域,我们的分析仅限于在2d -- -- 最简单和系统完善程序,以保持规律性和最佳复杂性的系统完善程序,在2d -- -- 最简单和最简单的节点上挂接节点 -- -- 挂接节点的三角环。AVEMS的后继错误分析中,一个重大挑战是稳定化术语的存在,该术语与剩余类型误差估计符的顺序相同,但防止后者与能源误差等同。在假定任何循环生成的节点的链条均具有统一界限长度的情况下,我们表明稳定化术语相对于错误估计符提供了足够大的稳定参数,可以任意变小。这一量化估计导致能源误差的上下一个后继误差界限。 VEMS的这一新和关键属性取决于连续直线函数的最大亚空空间,以及其伸缩尺度和VEM1类空域的精细度之间的微妙相互作用,包括VEM1 和摩质度变的任何IM1。