We propose Multivariate Quantile Function Forecaster (MQF$^2$), a global probabilistic forecasting method constructed using a multivariate quantile function and investigate its application to multi-horizon forecasting. Prior approaches are either autoregressive, implicitly capturing the dependency structure across time but exhibiting error accumulation with increasing forecast horizons, or multi-horizon sequence-to-sequence models, which do not exhibit error accumulation, but also do typically not model the dependency structure across time steps. MQF$^2$ combines the benefits of both approaches, by directly making predictions in the form of a multivariate quantile function, defined as the gradient of a convex function which we parametrize using input-convex neural networks. By design, the quantile function is monotone with respect to the input quantile levels and hence avoids quantile crossing. We provide two options to train MQF$^2$: with energy score or with maximum likelihood. Experimental results on real-world and synthetic datasets show that our model has comparable performance with state-of-the-art methods in terms of single time step metrics while capturing the time dependency structure.
翻译:我们建议多变量量函数预报器(MQF$2$),这是一种使用多变量量化函数构建的全球概率预测方法,它是一种全球概率预测方法,它是一种全球概率预测方法,它使用多孔元函数,并调查其应用于多孔数预报。以前的方法要么是自动递减,暗含地貌结构,而随着预测地平线的扩大而出现错误积累,要么是多方位序列到序列模型,这些模型不会出现错误积累,但通常也不会出现不同时间步骤的依赖结构模型。MQF$2$2美元将两种方法的效益结合起来,直接以多变量量化函数的形式作出预测,其定义为我们使用输入-convex神经网络进行对等化的 convex函数的梯度。从设计上看,微量函数是单数,与输入量度水平有关,从而避免四倍交叉。我们提供了两个选项来培训MQF$%2美元:与能源分或最大可能性相结合。在现实世界和合成数据系统中的实验结果显示我们模型具有可比较性的工作表现,同时以单一状态衡量模型。