Segmentation of marine oil spills in Synthetic Aperture Radar (SAR) images is a challenging task because of the complexity and irregularities in SAR images. In this work, we aim to develop an effective segmentation method which addresses marine oil spill identification in SAR images by investigating the distribution representation of SAR images. To seek effective oil spill segmentation, we revisit the SAR imaging mechanism in order to attain the probability distribution representation of oil spill SAR images, in which the characteristics of SAR images are properly modelled. We then exploit the distribution representation to formulate the segmentation energy functional, by which oil spill characteristics are incorporated to guide oil spill segmentation. Moreover, the oil spill segmentation model contains the oil spill contour regularisation term and the updated level set regularisation term which enhance the representational power of the segmentation energy functional. Benefiting from the synchronisation of SAR image representation and oil spill segmentation, our proposed method establishes an effective oil spill segmentation framework. Experimental evaluations demonstrate the effectiveness of our proposed segmentation framework for different types of marine oil spill SAR image segmentation.


翻译:合成孔径雷达(SAR)图像中海洋石油溢漏的分解是一项具有挑战性的任务,因为合成孔径雷达图像的复杂性和不合规定之处。在这项工作中,我们的目标是制定一种有效的分解方法,通过调查合成孔径雷达图像的分布情况,解决在合成孔径雷达图像中的海洋石油溢漏识别问题。为了寻求有效的石油溢漏分解,我们重新研究合成孔径雷达成像机制,以便实现石油溢漏合成孔径雷达图像的概率分布表,其中对合成孔径雷达图像的特征进行适当模拟。然后,我们利用分布表来形成分解能源功能,从而将石油溢漏特性纳入其中来指导石油溢漏分解。此外,石油溢漏分解模型包含着石油溢漏轮廓定期化术语,以及更新的定级定序术语,以加强分解能源功能的代表性。从合成孔径雷达图像代表的同步化和石油溢漏分离中受益。我们提出的方法建立了一个有效的石油溢漏分解框架。实验性评估表明我们提议的不同类型海洋石油溢漏合成孔径雷达图像分解框架的有效性。

0
下载
关闭预览

相关内容

【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
76+阅读 · 2021年1月30日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
已删除
将门创投
5+阅读 · 2019年4月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Arxiv
0+阅读 · 2022年2月18日
Arxiv
3+阅读 · 2018年4月5日
VIP会员
相关VIP内容
【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
76+阅读 · 2021年1月30日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
相关资讯
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
已删除
将门创投
5+阅读 · 2019年4月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Top
微信扫码咨询专知VIP会员