Adverse posttraumatic neuropsychiatric sequelae (APNS) are common among veterans and millions of Americans after traumatic exposures, resulting in substantial burdens for trauma survivors and society. Despite numerous studies conducted on APNS over the past decades, there has been limited progress in understanding the underlying neurobiological mechanisms due to several unique challenges. One of these challenges is the reliance on subjective self-report measures to assess APNS, which can easily result in measurement errors and biases (e.g., recall bias). To mitigate this issue, in this paper, we investigate the potential of leveraging the objective longitudinal mobile device data to identify homogeneous APNS states and study the dynamic transitions and potential risk factors of APNS after trauma exposure. To handle specific challenges posed by longitudinal mobile device data, we developed exploratory hidden Markov factor models and designed a Stabilized Expectation-Maximization algorithm for parameter estimation. Simulation studies were conducted to evaluate the performance of parameter estimation and model selection. Finally, to demonstrate the practical utility of the method, we applied it to mobile device data collected from the Advancing Understanding of RecOvery afteR traumA (AURORA) study.
翻译:暂无翻译