Mim-width and sim-width are among the most powerful graph width parameters, with sim-width more powerful than mim-width, which is in turn more powerful than clique-width. While several $\mathsf{NP}$-hard graph problems become tractable for graph classes whose mim-width is bounded and quickly computable, no algorithmic applications of boundedness of sim-width are known. In [Kang et al., A width parameter useful for chordal and co-comparability graphs, Theoretical Computer Science, 704:1-17, 2017], it is asked whether \textsc{Independent Set} and \textsc{$3$-Colouring} are $\mathsf{NP}$-complete on graphs of sim-width at most $1$. We observe that, for each $k \in \mathbb{N}$, \textsc{List $k$-Colouring} is polynomial-time solvable for graph classes whose sim-width is bounded and quickly computable. Moreover, we show that if the same holds for \textsc{Independent Set}, then \textsc{Independent $\mathcal{H}$-Packing} is polynomial-time solvable for graph classes whose sim-width is bounded and quickly computable. This problem is a common generalisation of \textsc{Independent Set}, \textsc{Induced Matching}, \textsc{Dissociation Set} and \textsc{$k$-Separator}. We also make progress toward classifying the mim-width of $(H_1,H_2)$-free graphs in the case $H_1$ is complete or edgeless. Our results solve some open problems in [Brettell et al., Bounding the mim-width of hereditary graph classes, Journal of Graph Theory, 99(1):117-151, 2022].


翻译:微网维度和微网维度属于最强的图形宽度参数 {% 151{ 平方平面 { 平面 { 平面 { 平面 { 平面 { 平面 { 平面 { 平面 { 平面 { 平面 { 平面 { 平面 { 平面 { 平面 { 平面 { 平面 { 平面 { 平面 { 平面 : 平面 和 平面 平面 704: 17, 平面 平面 平面 平面 数 和 平面 $ 平面 $ 。 平面 平面 平面 平面 平面 平面 平面 平面 平面 平面 平面 平面 平面 平面 平面 平面 平面 平面 平面 平面 平面, 平面 平面 平面 平面 平面 平面 平面 平面 平面 平面 。

0
下载
关闭预览

相关内容

【2022新书】谱图理论,Spectral Graph Theory,100页pdf
专知会员服务
74+阅读 · 2022年4月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年7月15日
Arxiv
0+阅读 · 2022年7月15日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员