We determine the minimum possible column multiplicity of even, doubly-, and triply-even codes given their length. This refines a classification result for the possible lengths of $q^r$-divisible codes over $\mathbb{F}_q$. We also give a few computational results for field sizes $q>2$. Non-existence results of divisible codes with restricted column multiplicities for a given length have applications e.g. in Galois geometry and can be used for upper bounds on the maximum cardinality of subspace codes.
翻译:暂无翻译