Automated model-based test generation presents a viable alternative to the costly manual test creation currently employed for regression testing of web apps. However, existing model inference techniques rely on threshold-based whole-page comparison to establish state equivalence, which cannot reliably identify near-duplicate web pages in modern web apps. Consequently, existing techniques produce inadequate models for dynamic web apps, and fragile test oracles, rendering the generated regression test suites ineffective. We propose a model-based test generation technique, FRAGGEN, that eliminates the need for thresholds, by employing a novel state abstraction based on page fragmentation to establish state equivalence. FRAGGEN also uses fine-grained page fragment analysis to diversify state exploration and generate reliable test oracles. Our evaluation shows that FRAGGEN outperforms existing whole-page techniques by detecting more near-duplicates, inferring better web app models and generating test suites that are better suited for regression testing. On a dataset of 86,165 state-pairs, FRAGGEN detected 123% more near-duplicates on average compared to whole-page techniques. The crawl models inferred by FRAGGEN have 62% more precision and 70% more recall on average. FRAGGEN also generates reliable regression test suites with test actions that have nearly 100% success rate on the same version of the web app even if the execution environment is varied. The test oracles generated by FRAGGEN can detect 98.7% of the visible changes in web pages while being highly robust, making them suitable for regression testing.


翻译:自动模型测试生成是目前用于网络应用程序回归测试的昂贵人工测试的替代方法。然而,现有的模型推断技术依赖于基于门槛的全页比较,以建立州等值,无法可靠地识别现代网络应用程序中近复制的网页。因此,现有技术为动态网络应用程序和脆弱的测试神器生成了不适当的模型,使得生成的回归测试套件无效。我们建议采用基于模型的测试生成技术FRAGGGEN,通过使用基于页面破碎的新的国家抽象模型来建立州等值来消除阈值需求。FRAGGEN还使用精密的页面碎片分析来使州探索多样化并产生可靠的测试或触雷器。我们的评估表明,FRAGGEN通过探测更接近的复制件,推导出更好的网络应用程序模型和生成更适合回归测试的测试套件。在86,165个州级的数据集中,FRAGGEN还检测了123 % 与整页技术相比平均接近的复制件数分析。通过100个更精确的精确度模型来测试现有现有的全局技术。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员