Transforming large deep neural network (DNN) models into the multi-exit architectures can overcome the overthinking issue and distribute a large DNN model on resource-constrained scenarios (e.g. IoT frontend devices and backend servers) for inference and transmission efficiency. Nevertheless, intellectual property (IP) protection for the multi-exit models in the wild is still an unsolved challenge. Previous efforts to verify DNN model ownership mainly rely on querying the model with specific samples and checking the responses, e.g., DNN watermarking and fingerprinting. However, they are vulnerable to adversarial settings such as adversarial training and are not suitable for the IP verification for multi-exit DNN models. In this paper, we propose a novel approach to fingerprint multi-exit models via inference time rather than inference predictions. Specifically, we design an effective method to generate a set of fingerprint samples to craft the inference process with a unique and robust inference time cost as the evidence for model ownership. We conduct extensive experiments to prove the uniqueness and robustness of our method on three structures (ResNet-56, VGG-16, and MobileNet) and three datasets (CIFAR-10, CIFAR-100, and Tiny-ImageNet) under comprehensive adversarial settings.


翻译:将大型深神经网络(DNN)模型转换为多输出结构,可以克服过度思考问题,并分发关于资源限制情景(例如IoT前端装置和后端服务器)的大型DNN模型,以便进行推断和传输效率。然而,对野生多输出模型的知识产权保护仍然是一个尚未解决的挑战。以前核查DNN模型所有权的努力主要依靠以具体样本查询模型并检查答复,例如DNN水标记和指纹等。然而,它们容易受到对抗性培训等对抗性环境的伤害,不适合对多输出DNN模型的IP核查。在本文件中,我们提出一种新的办法,通过推断时间而不是推断预测来鉴别多输出模型。具体地说,我们设计了一套有效的方法来生成一套指纹样本样本样本,以独特而有力的推论时间来绘制推论过程,作为模型所有权的证据。我们进行了广泛的实验,以证明我们三种结构(ResNet-56、IMFAR-10和IMAFAR三套结构(Res-Net-I)的独特性和坚固性。我们进行了大规模实验以证明我们的方法在三种结构下的独特性和坚固性,CIR-I-NAFARAFAR-100和C-NAFAR-NAFAR-3结构(Res-I)和I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-IATFAR和I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
44+阅读 · 2020年10月31日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
67+阅读 · 2020年10月24日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
37+阅读 · 2020年2月21日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
CTR预估专栏 | 一文搞懂阿里Deep Interest Network
AI前线
14+阅读 · 2018年7月20日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Deep Learning & Neural Network 免费学习资源【译】
乐享数据DataScientists
5+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Sparsifying Neural Network Connections for Face Recognition
统计学习与视觉计算组
7+阅读 · 2017年6月10日
Arxiv
0+阅读 · 2021年11月27日
Arxiv
7+阅读 · 2021年10月12日
Arxiv
5+阅读 · 2020年3月16日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
CTR预估专栏 | 一文搞懂阿里Deep Interest Network
AI前线
14+阅读 · 2018年7月20日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Deep Learning & Neural Network 免费学习资源【译】
乐享数据DataScientists
5+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Sparsifying Neural Network Connections for Face Recognition
统计学习与视觉计算组
7+阅读 · 2017年6月10日
Top
微信扫码咨询专知VIP会员