The Fourier Neural Operator (FNO) is a learning-based method for efficiently simulating partial differential equations. We propose the Factorized Fourier Neural Operator (F-FNO) that allows much better generalization with deeper networks. With a careful combination of the Fourier factorization, a shared kernel integral operator across all layers, the Markov property, and residual connections, F-FNOs achieve a six-fold reduction in error on the most turbulent setting of the Navier- Stokes benchmark dataset. We show that our model maintains an error rate of 2% while still running an order of magnitude faster than a numerical solver, even when the problem setting is extended to include additional contexts such as viscosity and time-varying forces. This enables the same pretrained neural network to model vastly different conditions.
翻译:Fourier Neoral运算符(FNO)是一种以学习为基础的方法,可以有效模拟部分差异方程式。 我们建议使用一个能让更深的网络更普遍化的分级四级神经运算符(F-FNO) 。 F-FNO(Fourier Neoral 运算符) 仔细结合了 Fourier 因素化、 各个层次的共享内核整体操作器、 Markov 属性和剩余连接, F-FNO(Fourier Neoral) 在Navier- Stokes 基准数据集最动荡的设置上实现了六倍的错误减少。 我们显示,我们模型的误差率为2%, 但仍然比数字解算器的幅度要快得多, 即使问题设置扩展到包括了其它环境, 如粘度和时间变化力。 这使得同样的预先训练的神经网络能够建模完全不同的条件。