A $3$-uniform hypergraph is a generalization of simple graphs where each hyperedge is a subset of vertices of size $3$. The degree of a vertex in a hypergraph is the number of hyperedges incident with it. The degree sequence of a hypergraph is the sequence of the degrees of its vertices. The degree sequence problem for $3$-uniform hypergraphs is to decide if a $3$-uniform hypergraph exists with a prescribed degree sequence. Such a hypergraph is called a realization. Recently, Deza \emph{et al.} proved that the degree sequence problem for $3$-uniform hypergraphs is NP-complete. Some special cases are easy; however, polynomial algorithms have been known so far only for some very restricted degree sequences. The main result of our research is the following. If all degrees are between $\frac{2n^2}{63}+O(n)$ and $\frac{5n^2}{63}-O(n)$ in a degree sequence $D$, further, the number of vertices is at least $45$, and the degree sum can be divided by $3$, then $D$ has a $3$-uniform hypergraph realization. Our proof is constructive and in fact, it constructs a hypergraph realization in polynomial time for any degree sequence satisfying the properties mentioned above. To our knowledge, this is the first polynomial running time algorithm to construct a $3$-uniform hypergraph realization of a highly irregular and dense degree sequence.
翻译:暂无翻译