We design an algorithm for computing the $L$-series associated to an Anderson $t$-motives, exhibiting quasilinear complexity with respect to the target precision. Based on experiments, we conjecture that the order of vanishing at $T=1$ of the $v$-adic $L$-series of a given Anderson $t$-motive with good reduction does not depend on the finite place $v$.
翻译:暂无翻译