Despite significant strides in visual quality assessment, the neural mechanisms underlying visual quality perception remain insufficiently explored. This study employed fMRI to examine brain activity during image quality assessment and identify differences in human processing of images with varying quality. Fourteen healthy participants underwent tasks assessing both image quality and content classification while undergoing functional MRI scans. The collected behavioral data was statistically analyzed, and univariate and functional connectivity analyses were conducted on the imaging data. The findings revealed that quality assessment is a more complex task than content classification, involving enhanced activation in high-level cognitive brain regions for fine-grained visual analysis. Moreover, the research showed the brain's adaptability to different visual inputs, adopting different strategies depending on the input's quality. In response to high-quality images, the brain primarily uses specialized visual areas for precise analysis, whereas with low-quality images, it recruits additional resources including higher-order visual cortices and related cognitive and attentional networks to decode and recognize complex, ambiguous signals effectively. This study pioneers the intersection of neuroscience and image quality research, providing empirical evidence through fMRI linking image quality to neural processing. It contributes novel insights into the human visual system's response to diverse image qualities, thereby paving the way for advancements in objective image quality assessment algorithms.
翻译:暂无翻译