Motivated by recent success of Machine Learning (ML) tools in wireless communications, the idea of semantic communication by Weaver from 1949 has received considerable attention. It breaks with the classic design paradigm of Shannon by aiming to transmit the meaning of a message, i.e., semantics, rather than its exact copy and thus allows for savings in channel uses or information rate. In this work, we extend the fundamental approach from Basu et al. for modeling semantics from logical to probabilistic entailment relations between meaning and messages. Thus, we model semantics by means of a hidden random variable and define the task of semantic communication as transmission of messages over a communication channel such that semantics is best preserved. We formulate the semantic communication design either as an Information Maximization or as an Information Bottleneck optimization problem. Finally, we propose the ML-based semantic communication system SINFONI for a distributed multipoint scenario: SINFONI communicates the meaning behind multiple messages that are observed at different senders to a single receiver for semantic retrieval. We analyze SINFONI by processing images as an example of messages. Numerical results reveal a tremendous rate normalized SNR shift up to 20 dB compared to classically designed communication systems.
翻译:在无线通信中,由Weaver 设计的语义通信概念最近的成功被无线通信中的机器学习工具(ML)工具所激发,因此,1949年Weaver 的语义通信概念引起了相当大的注意。它与香农的典型设计范式决裂,目的是传递信息的含义,即语义学,而不是其准确的副本,从而节省了频道的使用或信息率。在这项工作中,我们从Basu et al 等 推广基本方法,从逻辑到概率,从逻辑到概率,将含义与电文的关系建模。因此,我们用隐藏的随机变量来模拟语义通信,并将语义通信任务定义为在通信频道上传递信息,这样语义学才能得到最好的保存。我们把语义通信设计设计作为信息最大化或信息波特勒内克优化问题的语义设计设计设计。最后,我们建议以ML为基础的语义通信系统SINFONI为分布式多点假设:SINFI 将不同发送者观察到的多种信息背后的含义传达到一个单接收器进行语义检索的单一接收器。我们通过处理SINFONI 将Scialalalalalalal 将图像转换成一个图像,将Sleving devationaldddd 20的图像转换成一个典型图像为例图像的样本。