Semantic communication (SemCom) has recently been considered a promising solution to guarantee high resource utilization and transmission reliability for future wireless networks. Nevertheless, the unique demand for background knowledge matching makes it challenging to achieve efficient wireless resource management for multiple users in SemCom-enabled networks (SC-Nets). To this end, this paper investigates SemCom from a networking perspective, where two fundamental problems of user association (UA) and bandwidth allocation (BA) are systematically addressed in the SC-Net. First, considering varying knowledge matching states between mobile users and associated base stations, we identify two general SC-Net scenarios, namely perfect knowledge matching-based SC-Net and imperfect knowledge matching-based SC-Net. Afterward, for each SC-Net scenario, we describe its distinctive semantic channel model from the semantic information theory perspective, whereby a concept of bit-rate-to-message-rate transformation is developed along with a new semantics-level metric, namely system throughput in message (STM), to measure the overall network performance. In this way, we then formulate a joint STM-maximization problem of UA and BA for each SC-Net scenario, followed by a corresponding optimal solution proposed. Numerical results in both scenarios demonstrate significant superiority and reliability of our solutions in the STM performance compared with two benchmarks.
翻译:最近,人们认为语义通信(SemCom)是保证未来无线网络高资源利用和传输可靠性的一个大有希望的解决办法,然而,对背景知识匹配的独特需求使得在SemCom支持的网络(SC-Nets)中为多个用户实现高效无线资源管理具有挑战性。为此,本文件从网络的角度对SemCom进行了调查,在网络中系统地解决了用户联系和带宽分配的两个基本问题。首先,考虑到移动用户和相关基地站之间的不同知识匹配国家,我们确定了两种一般的SC-Net情景,即基于SC-Net的完美知识匹配匹配和基于SC-Net的不完善知识匹配。之后,我们从语义信息理论的角度介绍了其独特的语义频道模式,据此,与新的语义学等级衡量标准(即信息中的系统吞吐量)一起,以衡量整个网络的绩效。我们随后在每一种SC-Net情景中制定了一种联合的STM-M-矩阵化问题和一种不完善的知识匹配的SC-Net模型,并用一种最优的S-M-BAS-C-S-S-S-S-S-S-S-S-S-S-S-A-S-S-S-S-S-S-S-A-S-S-S-S-S-S-S-S-S-A-S-S-S-S-S-S-S-S-S-S-S-S-S-S-A-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-A-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-