项目名称: 高离化率磁控溅射薄膜制备及形成机理研究

项目编号: No.U1330113

项目类型: 联合基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 孙鸿

作者单位: 西南交通大学

项目金额: 84万元

中文摘要: 由于存在“阴影”效应,常规磁控溅射技术在形状复杂的零部件表面制备薄膜,会出现薄膜厚度不均匀、局部脱落、孔洞处无法实现镀膜等问题。按照NSAF联合基金的要求,本项目采用高功率脉冲磁控溅射(HPPMS)技术,提高钛、铬溅射原子的离化率,控制薄膜沉积时离子的通量、入射方向及能量,消除“阴影”效应,在复杂工件的各个平面得到致密度高、厚度、结构、性能相同的均质氮化钛、氮化铬薄膜。本项目研究了影响HPPMS离化率关键因素,实现了对溅射原子的离化率及离子能量调控。在揭示HPPMS离化率、离子能量及离子初始入射角度(样品平面倾斜角度)对薄膜结构、性能影响机制及HPPMS薄膜生长机制的基础上,模拟分析复杂形状零件各不同倾斜角度平面上等离子体鞘层、电场分布及其对离子的能量、通量的影响,调控离化率、偏压和气压,利用HPPMS在复杂形状零件表面制备性能优异的均质薄膜,提高国防工业关键零部件寿命。

中文关键词: 高功率脉冲磁控溅射;离化率;离子能量;薄膜;结构

英文摘要: Due to the presence of the “shadow” effect, the films flaking, different film thickness and uncoated hole will appeared on the component different plane with complex shape, which is coated by conventional magnetron sputtering technique. In order to eliminate “shadow” effect and fabricated high density TiN or CrN film with same thickness, structure and properties on different plane of the complex shape components, the degree of Ti or Cr atom ionization is increased by high-power pulsed magnetron sputtering (HPPMS) and the ion flux, incident direction and energy can be controlled. The key factor of affect the degree of ionization is studied in this project. The degree of the atom ionization and the ion energy can be controlled by HPPMS parameter. The effect of HPPMS ionization rate, the ion energy and ion initial incident angle (sample surface tilt angle) on the films microstructure and properties is come up and the film growth mechanism of the HPPMS also is discussed. Then plasma sheath and electric field distribution simulation analysis on the different tilt angles plane of the complex shape component are studied. The effect of the plasma density and electrical field strength on the ion energy and flux also are discussed. The homogeneous films with excellent properties are synthesized on the complex shape compon

英文关键词: high power pulsed magnetron sputtering;sputtered atom ionization rate;ion energy;thin film;microstructure

成为VIP会员查看完整内容
0

相关内容

知识图谱嵌入技术研究综述
专知会员服务
131+阅读 · 2022年2月5日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
22+阅读 · 2021年4月21日
【经典书】数理统计学,142页pdf
专知会员服务
94+阅读 · 2021年3月25日
[NeurIPS 2020] 球形嵌入的深度度量学习
专知会员服务
16+阅读 · 2020年11月8日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
47+阅读 · 2019年9月24日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
python文本相似度计算
北京思腾合力科技有限公司
24+阅读 · 2017年11月6日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
56+阅读 · 2021年5月3日
Knowledge Representation Learning: A Quantitative Review
Arxiv
27+阅读 · 2018年4月12日
小贴士
相关主题
相关VIP内容
知识图谱嵌入技术研究综述
专知会员服务
131+阅读 · 2022年2月5日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
22+阅读 · 2021年4月21日
【经典书】数理统计学,142页pdf
专知会员服务
94+阅读 · 2021年3月25日
[NeurIPS 2020] 球形嵌入的深度度量学习
专知会员服务
16+阅读 · 2020年11月8日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
47+阅读 · 2019年9月24日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员