Wearable and unobtrusive monitoring and prediction of epileptic seizures has the potential to significantly increase the life quality of patients, but is still an unreached goal due to challenges of real-time detection and wearable devices design. Hyperdimensional (HD) computing has evolved in recent years as a new promising machine learning approach, especially when talking about wearable applications. But in the case of epilepsy detection, standard HD computing is not performing at the level of other state-of-the-art algorithms. This could be due to the inherent complexity of the seizures and their signatures in different biosignals, such as the electroencephalogram (EEG), the highly personalized nature, and the disbalance of seizure and non-seizure instances. In the literature, different strategies for improved learning of HD computing have been proposed, such as iterative (multi-pass) learning, multi-centroid learning and learning with sample weight ("OnlineHD"). Yet, most of them have not been tested on the challenging task of epileptic seizure detection, and it stays unclear whether they can increase the HD computing performance to the level of the current state-of-the-art algorithms, such as random forests. Thus, in this paper, we implement different learning strategies and assess their performance on an individual basis, or in combination, regarding detection performance and memory and computational requirements. Results show that the best-performing algorithm, which is a combination of multi-centroid and multi-pass, can indeed reach the performance of the random forest model on a highly unbalanced dataset imitating a real-life epileptic seizure detection application.


翻译:由于实时检测和可磨损设备设计的挑战,超维(HD)计算近年来演变为新的有希望的机器学习方法,特别是在谈论可磨损应用程序时。但是,在癫痫检测方面,标准的HD计算并不是在其他最先进的算法(“在线HD”)的水平上进行。这可能是由于缉获及其在不同生物信号(例如电脑图(EEEEG)、高度个性化性质以及缉获和非震荡实例的不平衡)中的签名具有内在复杂性,但仍是一个未实现的目标。在文献中,提出了改进HD计算学习的不同战略,例如反复(多路)学习、多中心学习和用样本重量(“在线HD”)学习。然而,大多数标准HD计算没有在具有挑战性的癫痫检测任务中进行测试,而且它仍然不清楚它们是否能提高HD的多面性能,以及缉获和非震荡的不均匀现象。在文献中,对森林进行最佳的模拟和混合计算性能进行评估,从而显示我们当前水平的测算结果。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
32+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
12+阅读 · 2019年3月14日
Phase-aware Speech Enhancement with Deep Complex U-Net
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
32+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员