Exponential dispersion model is a useful framework in machine learning and statistics. Primarily, thanks to the additive structure of the model, it can be achieved without difficulty to estimate parameters including mean. However, tight conditions on cumulant function, such as analyticity, strict convexity, and steepness, reduce the class of exponential dispersion model. In this work, we present relaxed exponential dispersion model K-LED (Legendre exponential dispersion model with K cumulants). The cumulant function of the proposed model is a convex function of Legendre type having continuous partial derivatives of K-th order on the interior of a convex domain. Most of the K-LED models are developed via Bregman-divergence-guided log-concave density function with coercivity shape constraints. The main advantage of the proposed model is that the first cumulant (or the mean parameter space) of the 1-LED model is easily computed through the extended global optimum property of Bregman divergence. An extended normal distribution is introduced as an example of 1-LED based on Tweedie distribution. On top of that, we present 2-LED satisfying mean-variance relation of quasi-likelihood function. There is an equivalence between a subclass of quasi-likelihood function and a regular 2-LED model, of which the canonical parameter space is open. A typical example is a regular 2-LED model with power variance function, i.e., a variance is in proportion to the power of the mean of observations. This model is equivalent to a subclass of beta-divergence (or a subclass of quasi-likelihood function with power variance function). Furthermore, a new parameterized K-LED model, the cumulant function of which is the convex extended logistic loss function, is proposed. This model includes Bernoulli distribution and Poisson distribution.
翻译:电源分散模型是机器学习和统计的一个有用框架。 主要是由于模型的添加结构, 可以不难估计包括平均值在内的参数。 但是, 累积函数的严格条件, 如分析性、 严格的调和和陡峭性, 减少了指数分散模型的等级。 在此工作中, 我们展示了轻松的指数分散模型 K- LED( 与 K 积积分的Legendre 指数分散模型 ) 。 拟议模型的累积功能是图雷尔式的 convex 函数, 其内部连续部分衍生 K- Th 顺序, 包括平均等离差。 K- LED 模型的多数条件是通过Bregman- divergence- 制导出逻辑- concolvey 函数开发的。 拟议模型的优势是, 模型模型的首次累积( 或平均参数空间分布) 可以通过扩展全球最佳变差的特性来计算。 扩展的正常分布方式, 以1- LEDF 等值为例, 在 Tweelian 的 II 流流流利 分布中, 上, 。 直观 直径 的 函数 。 直观 直观 的 。 。 直观 的 直观 的 的 的 直置 的 的 的 直径 值 值 直径 值 函数 的 。 。 。 的 。 此 的 。