Exponential dispersion model is a useful framework in machine learning and statistics. Primarily, thanks to the additive structure of the model, it can be achieved without difficulty to estimate parameters including mean. However, tight conditions on cumulant function, such as analyticity, strict convexity, and steepness, reduce the class of exponential dispersion model. In this work, we present relaxed exponential dispersion model K-LED (Legendre exponential dispersion model with K cumulants). The cumulant function of the proposed model is a convex function of Legendre type having continuous partial derivatives of K-th order on the interior of a convex domain. Most of the K-LED models are developed via Bregman-divergence-guided log-concave density function with coercivity shape constraints. The main advantage of the proposed model is that the first cumulant (or the mean parameter space) of the 1-LED model is easily computed through the extended global optimum property of Bregman divergence. An extended normal distribution is introduced as an example of 1-LED based on Tweedie distribution. On top of that, we present 2-LED satisfying mean-variance relation of quasi-likelihood function. There is an equivalence between a subclass of quasi-likelihood function and a regular 2-LED model, of which the canonical parameter space is open. A typical example is a regular 2-LED model with power variance function, i.e., a variance is in proportion to the power of the mean of observations. This model is equivalent to a subclass of beta-divergence (or a subclass of quasi-likelihood function with power variance function). Furthermore, a new parameterized K-LED model, the cumulant function of which is the convex extended logistic loss function, is proposed. This model includes Bernoulli distribution and Poisson distribution.


翻译:电源分散模型是机器学习和统计的一个有用框架。 主要是由于模型的添加结构, 可以不难估计包括平均值在内的参数。 但是, 累积函数的严格条件, 如分析性、 严格的调和和陡峭性, 减少了指数分散模型的等级。 在此工作中, 我们展示了轻松的指数分散模型 K- LED( 与 K 积积分的Legendre 指数分散模型 ) 。 拟议模型的累积功能是图雷尔式的 convex 函数, 其内部连续部分衍生 K- Th 顺序, 包括平均等离差。 K- LED 模型的多数条件是通过Bregman- divergence- 制导出逻辑- concolvey 函数开发的。 拟议模型的优势是, 模型模型的首次累积( 或平均参数空间分布) 可以通过扩展全球最佳变差的特性来计算。 扩展的正常分布方式, 以1- LEDF 等值为例, 在 Tweelian 的 II 流流流利 分布中, 上, 。 直观 直径 的 函数 。 直观 直观 的 。 。 直观 的 直观 的 的 的 直置 的 的 的 直径 值 值 直径 值 函数 的 。 。 。 的 。 此 的 。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
A General and Adaptive Robust Loss Function
Arxiv
8+阅读 · 2018年11月5日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
Arxiv
3+阅读 · 2018年2月22日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员