Edges are a basic and fundamental feature in image processing, that are used directly or indirectly in huge amount of applications. Inspired by the expansion of image resolution and processing power dilated convolution techniques appeared. Dilated convolution have impressive results in machine learning, we discuss here the idea of dilating the standard filters which are used in edge detection algorithms. In this work we try to put together all our previous and current results by using instead of the classical convolution filters a dilated one. We compare the results of the edge detection algorithms using the proposed dilation filters with original filters or custom variants. Experimental results confirm our statement that dilation of filters have positive impact for edge detection algorithms form simple to rather complex algorithms.
翻译:图像处理的基本和基本特征是图像处理,直接或间接地用于大量应用。受图像解析度和处理电力放大技术的扩展的启发,出现了放大变异技术。在机器学习中,突变产生令人印象深刻的结果,我们在这里讨论在边缘检测算法中使用的标准过滤器的放大概念。在这项工作中,我们试图通过使用一种扩大的经典变异过滤器而不是传统的变异过滤器来整合我们以往和当前的所有结果。我们用拟议的放大过滤器与原始过滤器或定制变异器比较了边缘探测算法的结果。实验结果证实了我们的说法,即过滤器的放大对边缘检测算法具有积极影响,这种算法对相当复杂的算法来说是简单的。