In this paper, a safe and learning-based control framework for model predictive control (MPC) is proposed to optimize nonlinear systems with a non-differentiable objective function under uncertain environmental disturbances. The control framework integrates a learning-based MPC with an auxiliary controller in a way of minimal intervention. The learning-based MPC augments the prior nominal model with incremental Gaussian Processes to learn the uncertain disturbances. The cross-entropy method (CEM) is utilized as the sampling-based optimizer for the MPC with a non-differentiable objective function. A minimal intervention controller is devised with a control Lyapunov function and a control barrier function to guide the sampling process and endow the system with high probabilistic safety. The proposed algorithm shows a safe and adaptive control performance on a simulated quadrotor in the tasks of trajectory tracking and obstacle avoidance under uncertain wind disturbances.
翻译:在本文中,提议为模型预测控制建立一个安全和基于学习的模型预测控制控制框架,以优化非线性系统,在不确定的环境扰动中具有非差别性客观功能;控制框架以最低限度的干预方式将基于学习的MPC与辅助控制器整合为一种最低限度的辅助控制器;学习的MPC以递增高山进程的方式强化了先前的名义模型,以了解不确定的扰动;交叉热带方法(CEM)是作为基于取样的优化器,具有非差别性客观功能;设计了一个最低限度的干预控制器,具有控制Lyapunov功能和控制屏障功能,以指导取样过程,并使系统具有高度的概率性安全性;拟议的算法显示模拟的二次钻探器在跟踪轨迹和在不确定的风扰动下避免障碍时的安全性和适应性控制性表现。