In this work, we introduce a time memory formalism in poroelasticity model that couples the pressure and displacement. We assume this multiphysics process occurs in multicontinuum media. The mathematical model contains a coupled system of equations for pressures in each continuum and elasticity equations for displacements of the medium. We assume that the temporal dynamics is governed by fractional derivatives following some works in the literature. We derive an implicit finite difference approximation for time discretization based on the Caputo time fractional derivative. A Discrete Fracture Model (DFM) is used to model fluid flow through fractures and treat the complex network of fractures. We assume different fractional powers in fractures and matrix due to slow and fast dynamics. We develop a coarse grid approximation based on the Generalized Multiscale Finite Element Method (GMsFEM), where we solve local spectral problems for construction of the multiscale basis functions. We present numerical results for the two-dimensional model problems in fractured heterogeneous porous media. We investigate error analysis between reference (fine-scale) solution and multiscale solution with different numbers of multiscale basis functions. The results show that the proposed method can provide good accuracy on a coarse grid.
翻译:在这项工作中,我们引入了一种时间记忆形式化模式, 即将压力和偏移相伴而成。 我们假设这种多物理过程会发生在多连续介质中。 数学模型包含一个组合的系统, 各个连续体的压力方程式和介质迁移的弹性方程式。 我们假设时间动态由文献中的一些作品的分衍生物调节。 我们根据卡普托时间分流衍生物得出一个隐含的有限差异近似值, 以时间分解为基础。 一个分解断裂变模型( DFM) 用于模拟断裂流, 并治疗复杂的断裂网络。 我们假设断裂和矩阵中因缓慢和快速动态而具有不同的分数力和矩阵。 我们根据通用的多级软化法( GMSFEM) 开发了一个粗网格近似值。 我们用此方法来解决构建多级基函数的本地光谱问题。 我们为断裂的多级多级多级介质介质介质介质的两维模型问题提供了数字结果。 我们调查参考( 规模) 解决方案和多级的多级网格函数之间的错误分析结果。 我们能够提供一个好的组合方法。