In Euclidean Uniform Facility Location (UFL), the input is a set of clients in $\mathbb{R}^d$ and the goal is to place facilities to serve them, so as to minimize the total cost of opening facilities plus connecting the clients. We study the setting of dynamic geometric streams, where the clients are presented as a sequence of insertions and deletions of points in the grid $\{1,\ldots,\Delta\}^d$, and we focus on the \emph{high-dimensional regime}, where the algorithm must use space polynomial in $d\cdot\log\Delta$. We present a new algorithmic framework, based on importance sampling, for $O(1)$-approximation of UFL using only $\mathrm{poly}(d\cdot\log\Delta)$ space. This framework is easy to implement in two passes, one for sampling points and the other for estimating their contribution. Over random-order streams, we can extend this to one pass by using the two halves of the stream separately. Our main result, for arbitrary-order streams, computes $O(d / \log d)$-approximation in one pass by combining the two passes differently. This improves upon previous algorithms that either need space $\exp(d)$ or only guarantee $O(d\cdot\log^2\Delta)$-approximation, and therefore our algorithms for high dimension are the first to avoid the $O(\log\Delta)$-factor in approximation that is inherent to the widely-used quadtree decomposition. Our improvement is achieved by employing a geometric hashing scheme that maps points in $\mathbb{R}^d$ into buckets of bounded diameter, with the key property that every point set of small-enough diameter is hashed into few buckets. By applying an alternative bound for this hashing, we also obtain an $O(1 / \epsilon)$-approximation in one pass, using larger but still sublinear space $O(n^{\epsilon})$ where $n$ is the number of clients. We complement our results by showing $1.085$-approximation requires space exponential in $\mathrm{poly}(d\cdot\log\Delta)$.


翻译:在 Euclidean 统一设施位置 (UFL) 中, 输入是一组以美元计算的直径客户, 其计算法必须使用以美元计算的空间多元值, 目的是为它们服务, 以便最大限度地降低开机设施的总成本, 并连接客户。 我们研究动态几何流的设置, 客户作为插入和删除网格中点的序列 $1,\ ldot,\ Delta=dd$, 并且我们侧重于 平流/ 高维值的客户, 计算法必须用美元=ddddd=$美元, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 平流中, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 平流为单位, 平流为单位, 以美元, 平价结果, 以美元为单位, 以美元为单位, 以美元, 以美元为单位, 以美元, 以美元为单位, 将平流结果为单位, 以美元为单位, 平流结果为单位, 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月21日
Arxiv
0+阅读 · 2023年3月20日
Arxiv
24+阅读 · 2021年3月4日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员