It is well known that vision classification models suffer from poor calibration in the face of data distribution shifts. In this paper, we take a geometric approach to this problem. We propose Geometric Sensitivity Decomposition (GSD) which decomposes the norm of a sample feature embedding and the angular similarity to a target classifier into an instance-dependent and an instance-independent component. The instance-dependent component captures the sensitive information about changes in the input while the instance-independent component represents the insensitive information serving solely to minimize the loss on the training dataset. Inspired by the decomposition, we analytically derive a simple extension to current softmax-linear models, which learns to disentangle the two components during training. On several common vision models, the disentangled model outperforms other calibration methods on standard calibration metrics in the face of out-of-distribution (OOD) data and corruption with significantly less complexity. Specifically, we surpass the current state of the art by 30.8% relative improvement on corrupted CIFAR100 in Expected Calibration Error. Code available at https://github.com/GT-RIPL/Geometric-Sensitivity-Decomposition.git.
翻译:众所周知,在数据分布变化的情况下,视觉分类模型在数据分布变化面前的校准差强。在本文中,我们对这个问题采取几何方法。我们建议采用几何感知分解法分解法,分解样样嵌嵌入的规范,并与目标分类法的角相似,形成一个以实例为依存和以实例为依存的构成部分。依赖实例的部件捕捉关于输入变化的敏感信息,而依赖实例的部件则只代表为尽量减少培训数据集的损失而提供的不敏感信息。在分解的启发下,我们分析地为目前的软线型软式模型提供了简单的扩展,该模型在培训期间学会分解这两个组成部分。在几个共同的视觉模型上,分解的模型超越了标准校准指标方面的其他校准方法,面对分解(OOD)的数据和腐败的复杂程度要大大降低。具体地说,我们比当前在预期的卡利伯利错误中腐败的CIFAR100相对改进了30.8%。在http://GT/GT/Decismatium-Decision上可以使用代码。