Variational data assimilation optimizes for an initial state of a dynamical system such that its evolution fits observational data. The physical model can subsequently be evolved into the future to make predictions. This principle is a cornerstone of large scale forecasting applications such as numerical weather prediction. As such, it is implemented in current operational systems of weather forecasting agencies across the globe. However, finding a good initial state poses a difficult optimization problem in part due to the non-invertible relationship between physical states and their corresponding observations. We learn a mapping from observational data to physical states and show how it can be used to improve optimizability. We employ this mapping in two ways: to better initialize the non-convex optimization problem, and to reformulate the objective function in better behaved physics space instead of observation space. Our experimental results for the Lorenz96 model and a two-dimensional turbulent fluid flow demonstrate that this procedure significantly improves forecast quality for chaotic systems.
翻译:动态系统初始状态的变异数据同化优化, 使其进化符合观测数据。 物理模型随后可以演变为未来进行预测。 这一原则是大规模预报应用的基石, 如数值天气预测。 因此, 它在全球气象预报机构目前的操作系统中实施。 然而, 找到良好的初始状态, 在一定程度上由于物理状态及其相应的观测之间不可忽略的关系, 造成了一个难以优化的问题。 我们从观测数据到物理状态的绘图, 并展示如何利用它来改进优化性。 我们用两种方法来进行这一绘图: 更好地初始化非电流优化问题, 重新配置在更好的物理空间而不是观测空间中的目标功能。 我们的Lorenz96模型实验结果和二维动荡流流表明, 这一程序极大地改善了混乱系统的预测质量。