With the development of wearable technologies, a new kind of healthcare data has become valuable as medical information. These data provide meaningful information regarding an individual's physiological and psychological states, such as activity level, mood, stress, and cognitive health. These biomarkers are named digital since they are collected from digital devices integrated with various sensors. In this study, we explore digital biomarkers related to stress modality by examining data collected from mobile phones and smartwatches. We utilize machine learning techniques on the Tesserae dataset, precisely Random Forest, to extract stress biomarkers. Using feature selection techniques, we utilize weather, activity, heart rate (HR), stress, sleep, and location (work-home) measurements from wearables to determine the most important stress-related biomarkers. We believe we contribute to interpreting stress biomarkers with a high range of features from different devices. In addition, we classify the $5$ different stress levels with the most important features, and our results show that we can achieve $85\%$ overall class accuracy by adjusting class imbalance and adding extra features related to personality characteristics. We perform similar and even better results in recognizing stress states with digital biomarkers in a daily-life scenario targeting a higher number of classes compared to the related studies.
翻译:随着可磨损技术的发展,一种新的保健数据已变得作为医疗信息而具有价值。这些数据提供了有关个人生理和心理状态的有意义的信息,例如活动水平、情绪、压力和认知健康。这些生物标志被命名为数字标志,因为它们是从与各种传感器相结合的数字装置中收集的。在这项研究中,我们通过审查从移动电话和智能观察所收集的数据,探索与压力模式有关的数字生物标志。我们利用泰瑟拉数据集上的机器学习技术,确切地说是随机森林,以提取压力生物标志。我们利用特征选择技术,利用从可磨损的天气、活动、心率(HR)、压力、睡眠和位置(工作-家庭)测量方法,确定最重要的与压力有关的生物标志。我们认为,我们有助于解释具有不同装置高特点的压力生物标志。此外,我们用最重要的特征对5美元不同的压力等级进行分类,我们的结果显示,通过调整阶级不平衡和增加与个性特征有关的特性,我们可以达到850美美元的总体等级精确度。我们通过识别与日常生活情景中数字生物标记相关的数字生物标记的等级,取得了更高甚至更好的结果。我们认识到与日常生活中与日常生活情景中的数字相比标数有关的压力状态。</s>