With the development of wearable technologies, a new kind of healthcare data has become valuable as medical information. These data provide meaningful information regarding an individual's physiological and psychological states, such as activity level, mood, stress, and cognitive health. These biomarkers are named digital since they are collected from digital devices integrated with various sensors. In this study, we explore digital biomarkers related to stress modality by examining data collected from mobile phones and smartwatches. We utilize machine learning techniques on the Tesserae dataset, precisely Random Forest, to extract stress biomarkers. Using feature selection techniques, we utilize weather, activity, heart rate (HR), stress, sleep, and location (work-home) measurements from wearables to determine the most important stress-related biomarkers. We believe we contribute to interpreting stress biomarkers with a high range of features from different devices. In addition, we classify the $5$ different stress levels with the most important features, and our results show that we can achieve $85\%$ overall class accuracy by adjusting class imbalance and adding extra features related to personality characteristics. We perform similar and even better results in recognizing stress states with digital biomarkers in a daily-life scenario targeting a higher number of classes compared to the related studies.


翻译:随着可磨损技术的发展,一种新的保健数据已变得作为医疗信息而具有价值。这些数据提供了有关个人生理和心理状态的有意义的信息,例如活动水平、情绪、压力和认知健康。这些生物标志被命名为数字标志,因为它们是从与各种传感器相结合的数字装置中收集的。在这项研究中,我们通过审查从移动电话和智能观察所收集的数据,探索与压力模式有关的数字生物标志。我们利用泰瑟拉数据集上的机器学习技术,确切地说是随机森林,以提取压力生物标志。我们利用特征选择技术,利用从可磨损的天气、活动、心率(HR)、压力、睡眠和位置(工作-家庭)测量方法,确定最重要的与压力有关的生物标志。我们认为,我们有助于解释具有不同装置高特点的压力生物标志。此外,我们用最重要的特征对5美元不同的压力等级进行分类,我们的结果显示,通过调整阶级不平衡和增加与个性特征有关的特性,我们可以达到850美美元的总体等级精确度。我们通过识别与日常生活情景中数字生物标记相关的数字生物标记的等级,取得了更高甚至更好的结果。我们认识到与日常生活中与日常生活情景中的数字相比标数有关的压力状态。</s>

0
下载
关闭预览

相关内容

可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能,可穿戴设备将会对我们的生活、感知带来很大的转变。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月27日
Arxiv
0+阅读 · 2023年4月26日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员