This paper presents a new dynamic approach to experiment design in settings where, due to interference or other concerns, experimental units are coarse. `Region-split' experiments on online platforms are one example of such a setting. The cost, or regret, of experimentation is a natural concern here. Our new design, dubbed Synthetically Controlled Thompson Sampling (SCTS), minimizes the regret associated with experimentation at no practically meaningful loss to inferential ability. We provide theoretical guarantees characterizing the near-optimal regret of our approach, and the error rates achieved by the corresponding treatment effect estimator. Experiments on synthetic and real world data highlight the merits of our approach relative to both fixed and `switchback' designs common to such experimental settings.
翻译:本文介绍了一种新的动态方法,在由于干扰或其他关切而实验单位粗糙的环境中进行实验设计。在线平台上的“区域-分流”实验就是这种环境的一个例子。实验的成本或遗憾是这里自然关注的一个问题。我们的新设计被称为“合成控制控制”的汤普森抽样(SCTS),最大限度地减少了与实验有关的遗憾,而实验并没有实际有意义的损失。我们提供了理论保证,说明我们的方法几乎最优化的遗憾,以及相应的治疗效应估计器所实现的错误率。关于合成和真实世界数据的实验突出表明了我们的方法相对于这种实验环境所共有的固定和“逆向”设计的好处。