Traffic forecasting as a canonical task of multivariate time series forecasting has been a significant research topic in AI community. To address the spatio-temporal heterogeneity and non-stationarity implied in the traffic stream, in this study, we propose Spatio-Temporal Meta-Graph Learning as a novel Graph Structure Learning mechanism on spatio-temporal data. Specifically, we implement this idea into Meta-Graph Convolutional Recurrent Network (MegaCRN) by plugging the Meta-Graph Learner powered by a Meta-Node Bank into GCRN encoder-decoder. We conduct a comprehensive evaluation on two benchmark datasets (i.e., METR-LA and PEMS-BAY) and a new large-scale traffic speed dataset called EXPY-TKY that covers 1843 expressway road links in Tokyo. Our model outperformed the state-of-the-arts on all three datasets. Besides, through a series of qualitative evaluations, we demonstrate that our model can explicitly disentangle the road links and time slots with different patterns and be robustly adaptive to any anomalous traffic situations. Codes and datasets are available at https://github.com/deepkashiwa20/MegaCRN.
翻译:作为多变时间序列预报的典型任务,交通流量预测一直是AI社区的一个重要研究课题。为了解决交通流中隐含的时空差异和非常态问题,我们在本研究中提议,Spatio-Temporal Met-Graph Learning 是一个关于时空数据的新型图表结构学习机制。具体地说,我们通过将Meta-Graph Convolution Convolial Compublic Network(MegaCRN)连接到Meta-Graph 学习器,将这一想法落实到Mea-Graph Learter 中。此外,通过一系列定性评估,我们证明我们的模型可以明确扰乱公路连接和时间序列(即METR-LA和PEMS-BAY),以及一个新的大型交通速度数据集,称为EXPY-TKY-KY,涵盖东京的1843条路路连接。我们的模型超越了所有三个数据集的状态-艺术。此外,通过一系列定性评估,我们证明我们的模型可以明确区分道路连接和时间段/时间序列。</s>