Developing automated and smart software vulnerability detection models has been receiving great attention from both research and development communities. One of the biggest challenges in this area is the lack of code samples for all different programming languages. In this study, we address this issue by proposing a transfer learning technique to leverage available datasets and generate a model to detect common vulnerabilities in different programming languages. We use C source code samples to train a Convolutional Neural Network (CNN) model, then, we use Java source code samples to adopt and evaluate the learned model. We use code samples from two benchmark datasets: NIST Software Assurance Reference Dataset (SARD) and Draper VDISC dataset. The results show that proposed model detects vulnerabilities in both C and Java codes with average recall of 72\%. Additionally, we employ explainable AI to investigate how much each feature contributes to the knowledge transfer mechanisms between C and Java in the proposed model.
翻译:开发自动化和智能软件脆弱性检测模型一直受到研究界和开发界的极大关注。该领域的最大挑战之一是缺乏所有不同编程语言的代码样本。在本研究中,我们通过提出一种转让学习技术来解决这一问题,以利用现有的数据集,并生成一种模型来发现不同编程语言的共同脆弱性。然后,我们使用C源代码样本来培训进化神经网络模型(CNN),然后,我们使用爪哇源代码样本来采用和评估所学的模型。我们使用两个基准数据集的代码样本:NIST软件保证参考数据集(SARD)和Draper VDISC数据集。结果显示,拟议的模型在C和Java代码中都检测了脆弱性,平均回顾72<unk> 。此外,我们使用可解释的AI来调查拟议模型中C和Java之间的知识传输机制的每个特征有多大作用。</s>