We study Steiner Forest on $H$-subgraph-free graphs, that is, graphs that do not contain some fixed graph $H$ as a (not necessarily induced) subgraph. We are motivated by a recent framework that completely characterizes the complexity of many problems on $H$-subgraph-free graphs. However, in contrast to e.g. the related Steiner Tree problem, Steiner Forest falls outside this framework. Hence, the complexity of Steiner Forest on $H$-subgraph-free graphs remained tantalizingly open. In this paper, we make significant progress towards determining the complexity of Steiner Forest on $H$-subgraph-free graphs. Our main results are four novel polynomial-time algorithms for different excluded graphs $H$ that are central to further understand its complexity. Along the way, we study the complexity of Steiner Forest for graphs with a small $c$-deletion set, that is, a small set $S$ of vertices such that each component of $G-S$ has size at most $c$. Using this parameter, we give two noteworthy algorithms that we later employ as subroutines. First, we prove Steiner Forest is FPT parameterized by $|S|$ when $c=1$ (i.e. the vertex cover number). Second, we prove Steiner Forest is polynomial-time solvable for graphs with a 2-deletion set of size at most 2. The latter result is tight, as the problem is NP-complete for graphs with a 3-deletion set of size 2.


翻译:本文研究了 H-子图不含图上的斯坦纳森林问题,即不包含某个固定图H作为(不一定是诱导的)子图的图。我们的研究动机是最近一个完整表征许多H-子图不含图上问题复杂性的框架。然而,与例如相关的斯坦纳树问题不同,斯坦纳森林问题不在这个框架之内。因此,斯坦纳森林问题在H-子图不含图上的复杂性仍然极具挑战。在本文中,我们在确定斯坦纳森林问题在H-子图不含图上的复杂性方面取得了显著进展。我们主要的结果是四种不同禁止图H的新型多项式时间算法,这些算法对于进一步了解其复杂性至关重要。在此过程中,我们研究了具有小c-删除集的图的斯坦纳森林问题的复杂性,即具有一个小集合S的图,该集合的每个连通分量的大小都不超过c。使用该参数,我们给出了两种值得注意的算法,我们稍后将作为子例程使用。首先,我们证明当c=1(即顶点覆盖数)时,斯坦纳森林问题是FPT参数化的。其次,我们证明对于2-删除集合大小不超过2的图,斯坦纳森林问题是能在多项式时间内求解的。后一种结果是紧密的,因为该问题对于3-删除集合大小为2的图是NP完全的。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
51+阅读 · 2021年6月30日
专知会员服务
51+阅读 · 2021年5月30日
【KDD2020】自适应多通道图卷积神经网络
专知会员服务
119+阅读 · 2020年7月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
一文带你浏览Graph Transformers
PaperWeekly
1+阅读 · 2022年7月8日
图表示学习Graph Embedding综述
AINLP
33+阅读 · 2020年5月17日
一文读懂图卷积GCN
计算机视觉life
21+阅读 · 2019年12月21日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2022年11月21日
CSKG: The CommonSense Knowledge Graph
Arxiv
18+阅读 · 2020年12月21日
Arxiv
10+阅读 · 2020年6月12日
Arxiv
11+阅读 · 2018年9月28日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
一文带你浏览Graph Transformers
PaperWeekly
1+阅读 · 2022年7月8日
图表示学习Graph Embedding综述
AINLP
33+阅读 · 2020年5月17日
一文读懂图卷积GCN
计算机视觉life
21+阅读 · 2019年12月21日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员