Contextual utility theory integrates context-sensitive factors into utility-based decision-making models. It stresses the importance of understanding individual decision-makers' preferences, values, and beliefs and the situational factors that affect them. Contextual utility theory benefits explainable AI. First, it can improve transparency and understanding of how AI systems affect decision-making. It can reveal AI model biases and limitations by considering personal preferences and context. Second, contextual utility theory can make AI systems more personalized and adaptable to users and stakeholders. AI systems can better meet user needs and values by incorporating demographic and cultural data. Finally, contextual utility theory promotes ethical AI development and social responsibility. AI developers can create ethical systems that benefit society by considering contextual factors like societal norms and values. This work, demonstrates how contextual utility theory can improve AI system transparency, personalization, and ethics, benefiting both users and developers.


翻译:摘要:上下文实用性理论将上下文敏感因素整合到基于效用的决策模型中。它强调了理解个人决策者的偏好、价值观和信仰以及影响它们的情境因素的重要性。上下文实用性理论有利于可解释的人工智能。首先,它可以提高对人工智能系统如何影响决策的透明度和理解性。它可以通过考虑个人偏好和背景来揭示人工智能模型的偏见和限制。其次,上下文实用性理论可以使人工智能系统更加个性化和适应用户和利益相关者。通过整合人口统计数据和文化数据,人工智能系统可以更好地满足用户需求和价值观。最后,上下文实用性理论促进了道德人工智能的发展和社会责任。人工智能开发者通过考虑社会规范和价值观等情境因素,可以创建有利于社会的道德系统。本研究展示了上下文实用性理论如何提高人工智能系统的透明度、个性化和道德性,从而使用户和开发者受益。

0
下载
关闭预览

相关内容

【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
27+阅读 · 2022年12月26日
《校准自主性中的信任》2022最新16页slides
专知会员服务
19+阅读 · 2022年12月7日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月15日
An Attentive Survey of Attention Models
Arxiv
44+阅读 · 2020年12月15日
VIP会员
相关VIP内容
【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
27+阅读 · 2022年12月26日
《校准自主性中的信任》2022最新16页slides
专知会员服务
19+阅读 · 2022年12月7日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员