In this paper, a new perspective is suggested for unsupervised Ontology Matching (OM) or Ontology Alignment (OA) by treating it as a translation task. Ontologies are represented as graphs, and the translation is performed from a node in the source ontology graph to a path in the target ontology graph. The proposed framework, Truveta Mapper (TM), leverages a multi-task sequence-to-sequence transformer model to perform alignment across multiple ontologies in a zero-shot, unified and end-to-end manner. Multi-tasking enables the model to implicitly learn the relationship between different ontologies via transfer-learning without requiring any explicit cross-ontology manually labeled data. This also enables the formulated framework to outperform existing solutions for both runtime latency and alignment quality. The model is pre-trained and fine-tuned only on publicly available text corpus and inner-ontologies data. The proposed solution outperforms state-of-the-art approaches, Edit-Similarity, LogMap, AML, BERTMap, and the recently presented new OM frameworks in Ontology Alignment Evaluation Initiative (OAEI22), offers log-linear complexity in contrast to quadratic in the existing end-to-end methods, and overall makes the OM task efficient and more straightforward without much post-processing involving mapping extension or mapping repair.
翻译:在本文中,通过将本部匹配(OM)或本部对齐(OA)作为翻译任务处理,为不受监督的本部匹配(OM)或本部匹配(OA)提出了一个新视角。本文件将本部匹配(OM)或本部对齐(OA)作为翻译任务处理。本单元以图表的形式表示本部匹配(OA),本单元将本部的本部图图图图图中的一个节点转化为目标本部图图图图中的一个路径。拟议的框架(Truveta Mappper(TM))将多任务序列序列到序列序列变后变式变式模型,以便以零发、统一和端到端到端的方式对多个本部的本部进行对齐。多任务变式使模型能够通过转移学习隐含地学习不同本科之间的关系,而无需任何明确的跨科手动标签数据。这也使得所拟订的框架能够超越运行时惯性拉伸缩和校准质量的现有解决方案。本模型只对公开提供的文本和内式数据进行预先培训和微调。拟议解决办法超越了最新设计的新方法、编辑-智能后比较方法、图表、地图地图地图地图地图图、地图图、地图地图图、地图地图图、地图地图图、地图图、内部图和系统化结构化结构化结构化、内部结构化结构化结构化、内部结构化、内部结构化、内部结构、内部结构化、内部结构、内部结构化、内部结构、内部结构、内部结构化、内部结构化、内部结构化、内部结构化、内部结构化、内部结构化、内部结构化、内部结构化、内部结构化、内部结构化、内部结构化、内部结构化、内部结构化、内部结构化结构化、内部结构化、内部结构化、内部结构化结构化结构化、内部结构化、内部结构化结构化结构化结构化、内部结构化结构化结构化结构化、内部结构化、内部结构化、内部结构化、内部结构化、内部结构化结构化结构化结构化、内部结构化结构化结构化结构化、内部结构化、内部结构化结构化、内部结构化结构化结构化、内部结构化结构化方法、内部结构化方法。