Copula-based dependence modelling often relies on parametric formulations. This is mathematically convenient but can be statistically inefficient if the parametric families are not suitable for the data and model in focus. To improve the flexibility in modeling dependence, we consider a Bayesian nonparametric mixture model of Archimedean copulas which can capture complex dependence patterns and can be extended to arbitrary dimensions. In particular we use the Poisson-Dirichlet process as mixing distribution over the single parameter of the Archimedean copulas. Properties of the mixture model are studied for the main Archimedenan families and posterior distributions are sampled via their full conditional distributions. Performance of the model is via numerical experiments involving simulated and real data.
翻译:暂无翻译