We consider the achievable rate maximization problem for intelligent reflecting surface (IRS) assisted multiple-input multiple-output systems in an underlay spectrum sharing scenario, subject to interference power constraints at primary users. The formulated non-convex optimization problem is challenging to solve due to its non-convexity as well as coupling design variables in the constraints. Different from existing works that are mostly based on alternating optimization (AO), we propose a penalty dual decomposition based gradient projection (PDDGP) algorithm to solve this problem. We also provide a convergence proof and a complexity analysis for the proposed algorithm. We benchmark the proposed algorithm against two known solutions, namely a minimum mean-square error based AO algorithm and an inner approximation method with block coordinate descent. Specifically, the complexity of the proposed algorithm is $O(N_I^2)$ while that of the two benchmark methods is $O(N_I^3)$, where $N_I$ is the number of IRS elements. Moreover, numerical results show that the proposed PDDGP algorithm yields considerably higher achievable rate than the benchmark solutions.


翻译:我们考虑了智能反射表面(IRS)协助的多投入多输出系统在一种内置频谱共享情况下的可实现率最大化问题,但受主要用户的干扰力限制。由于非凝固性以及制约的组合设计变数,配制的非碳化优化问题很难解决。与目前主要基于交替优化(AO)的工程不同,我们提议以双分解基梯度预测算法(PDDGP)来解决这个问题。我们还为拟议的算法提供了趋同证据和复杂分析。我们根据两种已知的解决方案,即以AO算法为基础的最小平均方差算法和以块协调底座坐标的内近似法,对提议的算法进行了基准基准基准。具体来说,拟议的算法的复杂性是$O(N_I2),而两种基准法的复杂程度是$O(N_I3)美元,其中以美元为IRS元素的数量。此外,数字结果显示,拟议的PDGPDG算法的可实现率大大高于基准解决办法。

0
下载
关闭预览

相关内容

Surface 是微软公司( Microsoft)旗下一系列使用 Windows 10(早期为 Windows 8.X)操作系统的电脑产品,目前有 Surface、Surface Pro 和 Surface Book 三个系列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由时任微软 CEO 史蒂夫·鲍尔默发布于在洛杉矶举行的记者会,2012 年 10 月 26 日上市销售。
专知会员服务
50+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
保序最优传输:Order-preserving Optimal Transport
我爱读PAMI
6+阅读 · 2018年9月16日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2022年2月24日
Arxiv
0+阅读 · 2022年2月22日
Arxiv
8+阅读 · 2018年11月27日
Arxiv
3+阅读 · 2018年2月12日
VIP会员
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
保序最优传输:Order-preserving Optimal Transport
我爱读PAMI
6+阅读 · 2018年9月16日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员