Excitable optoelectronic devices represent one of the key building blocks for implementation of artificial spiking neurons in neuromorphic (brain-inspired) photonic systems. This work introduces and experimentally investigates an opto-electro-optical (O/E/O) artificial neuron built with a resonant tunnelling diode (RTD) coupled to a photodetector as a receiver and a vertical cavity surface emitting laser as a the transmitter. We demonstrate a well defined excitability threshold, above which this neuron produces 100 ns optical spiking responses with characteristic neural-like refractory period. We utilise its fan-in capability to perform in-device coincidence detection (logical AND) and exclusive logical OR (XOR) tasks. These results provide first experimental validation of deterministic triggering and tasks in an RTD-based spiking optoelectronic neuron with both input and output optical (I/O) terminals. Furthermore, we also investigate in theory the prospects of the proposed system for its nanophotonic implementation with a monolithic design combining a nanoscale RTD element and a nanolaser; therefore demonstrating the potential of integrated RTD-based excitable nodes for low footprint, high-speed optoelectronic spiking neurons in future neuromorphic photonic hardware.
翻译:透视电子设备是神经形态(受脑启发的)光学系统中实施人工跳动神经神经元的关键构件之一。 这项工作介绍并实验性地调查了以共振隧道二极管(RTD)与光检测器作为接收器和垂直洞穴表面发射激光作为发射机的光检测器相结合的人工透光神经元( O/E/O)所建造的光学( O/E/O) 人造神经元( O/E/O) 。 我们展示了一个明确界定的可跳度阈值,超过此阈值,该神经元产生100 ns 光学反应,具有典型的神经神经相像相异的相异时期。 我们利用它的粉丝进入能力来进行分辨性巧合检测( 和 ) 和 独家逻辑 OR 任务。 这些结果首次对基于光学和输出光学( I/O) 终端的光学透视神经元神经元神经元进行实验性触发和任务进行实验性鉴定。 此外,我们还从理论上调查了拟议系统实施纳米光谱系统的前景, 其纳米光学系统将一个单式的硬性硬性设计结合了纳米系统,从而将一个高度的高级的硬性硬性硬性软化软化软缩缩缩缩缩缩缩缩缩缩缩缩成的系统。