We present Claim-Dissector: a novel latent variable model for fact-checking and analysis, which given a claim and a set of retrieved evidences jointly learns to identify: (i) the relevant evidences to the given claim, (ii) the veracity of the claim. We propose to disentangle the per-evidence relevance probability and its contribution to the final veracity probability in an interpretable way -- the final veracity probability is proportional to a linear ensemble of per-evidence relevance probabilities. In this way, the individual contributions of evidences towards the final predicted probability can be identified. In per-evidence relevance probability, our model can further distinguish whether each relevant evidence is supporting (S) or refuting (R) the claim. This allows to quantify how much the S/R probability contributes to the final verdict or to detect disagreeing evidence. Despite its interpretable nature, our system achieves results competitive with state-of-the-art on the FEVER dataset, as compared to typical two-stage system pipelines, while using significantly fewer parameters. It also sets new state-of-the-art on FAVIQ and RealFC datasets. Furthermore, our analysis shows that our model can learn fine-grained relevance cues while using coarse-grained supervision, and we demonstrate it in 2 ways. (i) We show that our model can achieve competitive sentence recall while using only paragraph-level relevance supervision. (ii) Traversing towards the finest granularity of relevance, we show that our model is capable of identifying relevance at the token level. To do this, we present a new benchmark TLR-FEVER focusing on token-level interpretability -- humans annotate tokens in relevant evidences they considered essential when making their judgment. Then we measure how similar are these annotations to the tokens our model is focusing on.
翻译:暂无翻译