In this paper, we propose a well-balanced fifth-order finite difference Hermite WENO (HWENO) scheme for the shallow water equations with non-flat bottom topography in pre-balanced form. For achieving the well-balance property, we adopt the similar idea of WENO-XS scheme [Xing and Shu, J. Comput. Phys., 208 (2005), 206-227.] to balance the flux gradients and the source terms. The fluxes in the original equation are reconstructed by the nonlinear HWENO reconstructions while other fluxes in the derivative equations are approximated by the high-degree polynomials directly. And an HWENO limiter is applied for the derivatives of equilibrium variables in time discretization step to control spurious oscillations which maintains the well-balance property. Instead of using a five-point stencil in the same fifth-order WENO-XS scheme, the proposed HWENO scheme only needs a compact three-point stencil in the reconstruction. Various benchmark examples in one and two dimensions are presented to show the HWENO scheme is fifth-order accuracy, preserves steady-state solution, has better resolution, is more accurate and efficient, and is essentially non-oscillatory.


翻译:在本文中,我们提出了一个平衡兼顾的五等分五级差异Hermite WENO(HWINO)方案,用于浅水方程式,其表层表面面貌以预先平衡的形式比较。为了实现平衡属性,我们采用了类似的WENO-XS计划[Xing和Shu,J.Comput.Phys.,208(2005)208、206-227]的概念,以平衡通量梯度和源值。原方程式的通量通过非线性HWENO重建来重建,而衍生方程式的其他通量则直接由高度多面形相近。在时间分化步骤中对平衡变量的衍生物应用HWENO限制,以控制维持平衡属性的随机振荡。拟议的HWENO-XS计划使用五等分点螺旋,而不是使用相同的WENO-XS计划,在重建过程中只需要一个三分点的紧要线。在一和两个层面提出各种基准示例,以显示HWENONO-C的精确度和精确度是第五个级的精确度。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
23+阅读 · 2022年2月4日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员