Initial semantics aims to capture inductive structures and their properties as initial objects in suitable categories. We focus on the initial semantics aiming to model the syntax and substitution structure of programming languages with variable binding as initial objects. Three distinct yet similar approaches to initial semantics have been proposed. An initial semantics result was first proved by Fiore, Plotkin, and Turi using {\Sigma}-monoids in their seminal paper published at LICS'99. Alternative frameworks were later introduced by Hirschowitz and Maggesi using modules over monads, and by Matthes and Uustalu using heterogeneous substitution systems. Since then, all approaches have been significantly developed by numerous researchers. While similar, the links between this different approaches remain unclear. This is especially the case as the literature is difficult to access, since it was mostly published in (short) conference papers without proofs, and contains many technical variations and evolutions. In this work, we introduce a framework based on monoidal categories that unifies these three distinct approaches to initial semantics, by suitably generalizing and combining them. Doing so we show that modules over monoids provide an abstract and easy to manipulate framework, that {\Sigma}-monoids and strengths naturally arise when stating and proving an initiality theorem, and that heterogeneous substitution systems enable us to prove the initiality theorem modularly. Moreover, to clarify the literature, we provide an extensive overview of related work using our framework as a cornerstone to explain the links between the different approaches and their variations.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
Arxiv
12+阅读 · 2019年2月26日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员