Power consumption is a dominant and still growing cost factor in data centers. In time periods with low load, the energy consumption can be reduced by powering down unused servers. We resort to a model introduced by Lin, Wierman, Andrew and Thereska that considers data centers with identical machines, and generalize it to heterogeneous data centers with $d$ different server types. The operating cost of a server depends on its load and is modeled by an increasing, convex function for each server type. In contrast to earlier work, we consider the discrete setting, where the number of active servers must be integral. Thereby, we seek truly feasible solutions. For homogeneous data centers ($d=1$), both the offline and the online problem were solved optimally by Albers and Quedenfeld (2018). In this paper, we study heterogeneous data centers with general time-dependent operating cost functions. We develop an online algorithm based on a work function approach which achieves a competitive ratio of $2d + 1 + \epsilon$ for any $\epsilon > 0$. For time-independent operating cost functions, the competitive ratio can be reduced to $2d + 1$. There is a lower bound of $2d$ shown by Albers and Quedenfeld (2021), so our algorithm is nearly optimal. For the offline version, we give a graph-based $(1+\epsilon)$-approximation algorithm. Additionally, our offline algorithm is able to handle time-variable data-center sizes.


翻译:在数据中心,电力消耗是一个主导且仍在不断增长的成本因素。 在低负荷的时期,能源消耗可以通过停用未使用的服务器来降低。 我们采用林、 维尔曼、 安德鲁 和 特雷斯卡 推出的模型,该模型将考虑使用相同机器的数据中心,并将它推广到使用美元不同的服务器类型的混合数据中心。 服务器的运行成本取决于其负荷, 并以每个服务器类型的不断增长的康韦克斯功能为模型。 与先前的工作相比, 我们考虑离散设置, 运行服务器的数量必须是不可或缺的。 因此, 我们寻求真正可行的解决方案。 对于同质数据中心( =1美元 ), 离线和在线问题都是由 Albers 和 Qudenfeld (2018) 以最佳的方式解决的。 在本文中, 我们用一般时间运行成本功能研究各异的数据中心。 我们开发了一个基于工作功能方法的在线算法, 其竞争比率为 2d+ 1+ explain $ (xilon) 。 对于任何 $ > 0。 对于依赖时间运行成本的运行功能功能, 将几乎由 Albelfelfer 和 ASlod 美元 的比值降为最低。 (20xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

专知会员服务
15+阅读 · 2021年5月21日
专知会员服务
50+阅读 · 2020年12月14日
【新书】Python数据科学食谱(Python Data Science Cookbook)
专知会员服务
114+阅读 · 2020年1月1日
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
60+阅读 · 2019年12月21日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【电子书推荐】Data Science with Python and Dask
专知会员服务
43+阅读 · 2019年6月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员