Objectives: This paper develops two algorithms to achieve federated generalized linear mixed effect models (GLMM), and compares the developed model's outcomes with each other, as well as that from the standard R package (`lme4'). Methods: The log-likelihood function of GLMM is approximated by two numerical methods (Laplace approximation and Gaussian Hermite approximation), which supports federated decomposition of GLMM to bring computation to data. Results: Our developed method can handle GLMM to accommodate hierarchical data with multiple non-independent levels of observations in a federated setting. The experiment results demonstrate comparable (Laplace) and superior (Gaussian-Hermite) performances with simulated and real-world data. Conclusion: We developed and compared federated GLMMs with different approximations, which can support researchers in analyzing biomedical data to accommodate mixed effects and address non-independence due to hierarchical structures (i.e., institutes, region, country, etc.).


翻译:本文件提出两种算法,以实现联合通用线性混合效应模型(GLMM),并相互比较所开发模型的结果,以及标准R包(“lme4”)的结果。 方法:GLMM的日志相似性功能被两种数字方法(Laplace近似值和Gaussian Hermite近似值)所近似,这些方法支持GLMM的联合会式分解,以将数据纳入计算。结果:我们开发的方法可以处理GLMM的等级数据,在联合环境下,以多种非独立水平的观测为对象。实验结果显示(Laplace)和高级(Gaussian-Hermite)的性能与模拟和实际世界数据相似。结论:我们用不同的近似值开发和比较了联邦GLMMM,这些方法可以支持研究人员分析生物医学数据,以适应混合效应,并解决等级结构(即研究所、区域、国家等)造成的非独立问题。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月21日
Arxiv
0+阅读 · 2021年11月19日
Arxiv
3+阅读 · 2020年5月1日
Arxiv
45+阅读 · 2019年12月20日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
【图与几何深度学习】Graph and geometric deep learning,49页ppt
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年11月21日
Arxiv
0+阅读 · 2021年11月19日
Arxiv
3+阅读 · 2020年5月1日
Arxiv
45+阅读 · 2019年12月20日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
Arxiv
3+阅读 · 2017年12月1日
Top
微信扫码咨询专知VIP会员