Objectives: This paper develops two algorithms to achieve federated generalized linear mixed effect models (GLMM), and compares the developed model's outcomes with each other, as well as that from the standard R package (`lme4'). Methods: The log-likelihood function of GLMM is approximated by two numerical methods (Laplace approximation and Gaussian Hermite approximation), which supports federated decomposition of GLMM to bring computation to data. Results: Our developed method can handle GLMM to accommodate hierarchical data with multiple non-independent levels of observations in a federated setting. The experiment results demonstrate comparable (Laplace) and superior (Gaussian-Hermite) performances with simulated and real-world data. Conclusion: We developed and compared federated GLMMs with different approximations, which can support researchers in analyzing biomedical data to accommodate mixed effects and address non-independence due to hierarchical structures (i.e., institutes, region, country, etc.).
翻译:本文件提出两种算法,以实现联合通用线性混合效应模型(GLMM),并相互比较所开发模型的结果,以及标准R包(“lme4”)的结果。 方法:GLMM的日志相似性功能被两种数字方法(Laplace近似值和Gaussian Hermite近似值)所近似,这些方法支持GLMM的联合会式分解,以将数据纳入计算。结果:我们开发的方法可以处理GLMM的等级数据,在联合环境下,以多种非独立水平的观测为对象。实验结果显示(Laplace)和高级(Gaussian-Hermite)的性能与模拟和实际世界数据相似。结论:我们用不同的近似值开发和比较了联邦GLMMM,这些方法可以支持研究人员分析生物医学数据,以适应混合效应,并解决等级结构(即研究所、区域、国家等)造成的非独立问题。