Kernel-based schemes are state-of-the-art techniques for learning by data. In this work we extend some ideas about kernel-based greedy algorithms to exponential-polynomial splines, whose main drawback consists in possible overfitting and consequent oscillations of the approximant. To partially overcome this issue, we introduce two algorithms which perform an adaptive selection of the spline interpolation points based on the minimization either of the sample residuals ($f$-greedy), or of an upper bound for the approximation error based on the spline Lebesgue function ($\lambda$-greedy). Both methods allow us to obtain an adaptive selection of the sampling points, i.e. the spline nodes. However, while the {$f$-greedy} selection is tailored to one specific target function, the $\lambda$-greedy algorithm is independent of the function values and enables us to define a priori optimal interpolation nodes.
翻译:基于内核的计划是数据学习的最先进技术。 在这项工作中,我们将关于内核贪婪算法的一些想法推广到指数-球状样条,其主要缺点在于可能超配和随之而来的近身振荡。为了部分克服这个问题,我们引入了两种算法,根据将样本残留量(f$-greedy)或根据样板 Lebesgue函数($\lambda$-greedy)的近似误差的上限,对样板点进行适应性选择。两种方法都使我们能够对样板点进行适应性选择,即样条节点。然而,虽然 $f$-greedy 选择是针对一个具体目标函数量身定制的, $\lambda$-greedy 算法是独立于功能值的, 并使我们能够定义一个前最佳的中间节点。