报告主题:图神经网络 (GNN) 算法及其应用
报告摘要:图神经网络将深度学习方法延伸到非欧几里得的图数据上,大大提高了图数据应用的精度。在这个报告中,我将简单回顾一下图卷积网络(GCN)并探讨如何提高GCN在图数据上的表示学习能力。我们的研究发现几个巧妙、简单的方法可以有效的提高GCN的表示能力,该方法可以等价表示为图注意力网络(GAT)。该方法的有效性在包括阿里巴巴等多个超大规模数据集上得到验证。
邀请嘉宾:唐杰,清华大学计算机系教授、系副主任,获杰青。研究兴趣包括:数据挖掘、社交网络和知识图谱。发表论文200余篇,引用10000余次(个人h-指数57)。主持研发了研究者社会网络挖掘系统AMiner,吸引了220个国家/地区1000多万独立IP访问。曾担任国际期刊ACM TKDD的执行主编和国际会议CIKM’16、WSDM’15的PC Chair、KDD’18大会副主席。作为第1完成人获北京市科技进步一等奖、中国人工智能学会科技进步一等奖、KDD杰出贡献奖。