The enormous quantity of data produced every day together with advances in data analytics has led to a proliferation of data management and analysis systems. Typically, these systems are built around highly specialized monolithic operators optimized for the underlying hardware. While effective in the short term, such an approach makes the operators cumbersome to port and adapt, which is increasingly required due to the speed at which algorithms and hardware evolve. To address this limitation, we present Modularis, an execution layer for data analytics based on sub-operators, i.e.,composable building blocks resembling traditional database operators but at a finer granularity. To demonstrate the advantages of our approach, we use Modularis to build a distributed query processing system supporting relational queries running on an RDMA cluster, a serverless cloud platform, and a smart storage engine. Modularis requires minimal code changes to execute queries across these three diverse hardware platforms, showing that the sub-operator approach reduces the amount and complexity of the code. In fact, changes in the platform affect only sub-operators that depend on the underlying hardware. We show the end-to-end performance of Modularis by comparing it with a framework for SQL processing (Presto), a commercial cluster database (SingleStore), as well as Query-as-a-Service systems (Athena, BigQuery). Modularis outperforms all these systems, proving that the design and architectural advantages of a modular design can be achieved without degrading performance. We also compare Modularis with a hand-optimized implementation of a join for RDMA clusters. We show that Modularis has the advantage of being easily extensible to a wider range of join variants and group by queries, all of which are not supported in the hand-tuned join.


翻译:每天产生的大量数据以及数据分析的进步导致数据管理和分析系统的扩散。 通常, 这些系统是围绕高度专业化的单一操作器建造的, 用于优化基础硬件。 虽然短期内有效, 这样一种方法使操作器在港口和适应方面变得很麻烦, 由于算法和硬件演变的速度而越来越需要这样做。 为解决这一限制, 我们展示了模块, 一个基于亚操作器的数据分析器的执行层, 即: 兼容的建筑块, 类似传统的数据库操作器, 但却是一个更精细的 Q 颗粒。 为了展示我们的方法在设计上的好处, 我们使用模块处理器来建立一个分布式的查询处理系统, 支持在 RDMA 集束上运行的查询, 一个没有服务器的云平台, 和一个智能存储引擎。 模块需要最小的代码修改来执行这三个不同的硬件平台的查询, 显示小操作器的方法会降低代码的数量和复杂性。 事实上, 平台的变化只会只影响小操作器的子操作器, 取决于基础的硬件。 我们显示的是, 将S- 格式的运行到一个功能变异式的运行框架。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
40+阅读 · 2020年9月6日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
8+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
6+阅读 · 2018年12月3日
VIP会员
相关VIP内容
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
40+阅读 · 2020年9月6日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
8+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
6+阅读 · 2018年12月3日
Top
微信扫码咨询专知VIP会员